The spice turmeric is yellow owing to the presence of the molecule curcumin. Dewprashad and Hadir (DOI: 10.1021/ed800014k) discuss an engaging and colorful demonstration that uses naturally occurring dyes from henna, turmeric, and rose petals that undergo pH-dependent structural and color changes. The demonstration illustrates the utility of resonance theory in predicting the relative acidities of alcohols. Molecules from this article are the JCE Featured Molecules (DOI: 10.1021/ed800038w) for this issue. Model of curcumin by William F. Coleman; photo of turmeric powder by Sanjay Acharya, http://commons.wikimedia.org/miki/file:Turmeric-powder.jpg, licensed for use under Creative Commons Attribution-Share Alike 3.0; cover art by Betsy True.

CHEMICAL EDUCATION TODAY

Editorial

1. Old Proverbs and New Lessons.
Norbert J. Pienta.

Especially for high School Teachers.

2. The Constant of Change.
Erica K. Jacobson and Laura E. Slocum.

Reports from Other Journals.

3. Research Advances.
Angela G. King.

Reports from Other Journals.

4. News from online.
Lynn Diener.

Instrumentation Topics for the Teaching Laboratory.

5. Introduction to a New Column: Instrumentation Topics for the Teaching Laboratory.
Michelle M. Bushey.
Chemical Education across Cultural and National.

10 A Call for Contributions to Chemical Education across Cultural and National Borders.
Jonathan R. Hill.

JCE in Transition.

13 JCE Editorial Staff.

News & Announcements.

15 January 2010 News & Announcements.

Letters

17 Evolving Alchemy into Chemistry: No Longer a Dichotomy.
Pedro Cintas.

Book & Media Reviews

18 Book Review of Promoting Integrated and Transformative Assessment: A Deeper Focus on Student Learning.
Catherine M. Wehlburg. Reviewed by Scott Smidt.

Robert M. Diamond Reviewed by Scott Smidt.

Book & Media Reviews

19 Book Review of Whole-Class Inquiry: Creating Student-Centered Science Communities.
Dennis Smithenry and Joan Gallagher-Bolos Reviewed by Robert Mullins.

Book & Media Reviews

Stephen DeMeo Reviewed by James W. Jetter.

Book & Media Reviews

20 Book Review of Molecular Physical Chemical for Engineers.

CHEMICAL FOR EVERYONE

22 Award Address.
You Can’t Get There from Here.
* A. H. Johnstone.

30 One-Hundred Years of pH.
* Rollie J. Myers.

IN THE CLASSROOM

Terminology and Teaching

33 You Said “Neutral”, but What Do You Mean?
* Paul G. Jasien.

Terminology and Teaching.

35 Mission Statement for the New Column, Terminology and Teaching.
* Paul G. Jasien.

Tested Demo.

36 Developing an Invisible Message about Relative Acidities of Alcohols in the Natural Products Henna, Turmeric, Rose Petals, and Vitamin A.
* Brahmadeo Dewprashad and Latifa Hadir.

40 The Properties of Oxygen Investigated with Easily Accessible Instrumentation.
* Manfred Adelhelm, Natasha Aristov, and Achim Habekost.

Advanced Chemistry Classroom and Laboratory.

45 The Elusive Excited Quintet 5d of Tb (III): A Source of Luminescence and Resonance Energy Transfer in Terbium Compounds.
* Kamil Klier.

47 Using a Tablet PC and OneNote 2007 to Teach Chemistry.
* Daniel C. Tofan.

49 Efficacy of Using Learning Communities To Improve Core Chemistry Education and Increase Student Interest and Retention in Chemistry.
* Wndy de Prophetis Dricoll, Maria Gelabert, and Nicholas Richardson.

54 Using Chem-Wiki To Increase Student Collaboration through Online Lab reporting.
* Edward W. Elliott III and Ana Fraimen.

57 Constructing the Components of a Lab Reporting.
* David E. Berry and Kelli L. Fawkes.

62 Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review.
Derek E. Gragson and John P. Hagen.

66 Green Chemistry.
Organic Porcess Technology Valuation: Cyclohexanone Oxime Syntheses.
Kevin C. Cannon and Maureen P. Breen.

IN THE LABORATORY

69 Mini-Lab Activities: Inquiry-Based Lab Activities for Formative Assessment.
Daniel Branan* and Matt Morgan.

73 IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy.
Jacqueline Bennett* and Tabatha Forster.

78 Wash Bottle Laboratory Exercises: Iodide-Catalyzed H₂O₂ Decomposition Reaction Kinetics Using the Rate Approach.
Rebecca Barlag* and Frazier Nyasulu.

81 Synthesis of 2,5-Dichloro.2,5.dimethylhexane by an Sn 1 Reaction.
Carl E. Wagner* and Pamela A. Marshall.

84 Microwave-Enhanced Organic Syntheses for the Undergraduate Laboratory: Diels — Alder Cycloaddition, Wittig Reaction, and Williamson Ether Synthesis.
Marsha R. Baar,*, Danielle Falcone, and Christopher Gordon.

87 Automated Combinatorial Chemistry in the Organic Chemistry Majors Laboratory.
Christopher J. Nichols* and Larry F. Hanne.

RESEARCH: SCIENCE AND EDUCATION

91 Developing Learning Objectives and Assessment Plans at a Variety of Institutions: Examples and Case Studies.
Marcy H. Towns.

97 Chemical Education Research.
Classifying End-of-Chapter Questions and Problems for Selected General Chemistry Textbooks Used in the United States.
Kariluz Dávila and Vicente Talanquer*.

102 Chemical Education Research.
A comparative Study of French and Turkish Students’ Ideas—Base Reactions.
Aytek Cokelez.

107 Chemical Education Research.
“Gone” into solution: Assessing the Effect of Hands-On Activity on Students’ comprehension of Solubility.
Laura B. Bruck, Aaron D. Bruck, and Amy J. Phelps*.

Chemical Education Research.
An Analysis of Undergraduate General Chemistry Students’ Misconceptions of the Submicroscopic Level of Precipitation Reactions.
Resa M. Kelly,* Juliet H. Barrera, and Saheed C. Mohamed.

ON THE WEB

JCE Featured Molecule
Molecular Models of Natural Acid—Base Indicators.
William F. Coleman.

Supporting Information is available free via the Internet at http://pubs.acs.org

Articles of special interest to high school teachers.